Language and Biology In-Silico Genomic Biology

What is the "genomic excitement" about?

http://www.tigr.org/tdb/tdb.html

The entire DNA sequences of important biological organisms are now available to the research community.

What is next?

Manuals of Life: Producing integrated databases of biological knowledge.

Bio-interfaces: Developing languages to express knowledge about biological data, processes and experiments.

Virtual Cells: Producing models of biological cells that are consistent with genomic data.

Bio-programming: Creating systems for manufacturing predictable biological systems that are controlled and monitored by a semi-automated in-silico bio-interfaces and virtual cells.

* these research tasks are listed in order of estimated difficulty.

What can we do now:

Engineering Inspired Representations and Algorithms:

- Gene Finding with HMMs
- Protein Function Assignment with Probabilistic Representations (PFAM)
- tRNA scan
- Boolean Network Modeling of Gene Regulation
- Gene Fusion Events by Database Search
- Discovery of Co-regulation by Text Search
- Bio-Spice
- MicroArrays
- Experimental Design (e.g, multiplex PCR)
- Fusion of Information Sources (Eisenberg)

Gene Finding Observation

- Most of the predicted genes in currently available genomes were predicted by hidden Markov models interpolated Markov models, and edit-distance technologies originally developed by the speech recognition community.
- Gene recognition technology in microbial DNA is achieving 98% accuracy, a remarkably low error rate for predictive biology systems.
- (See our system Glimmer, http://www.tigr.org).

These techniques were developed by the DARPA speech/language understanding initiative.

TALKS IN OUR SESSION

- Whole Genome Analysis (Salzberg)
 - Detecting Foreign DNA important for detecting possibly new microbial organisms.
 - Tuberculosis → Leprosy inversion + deletions important for building and detecting new microbial organisms.
- Predictive Biology (Stormo) a step towards automating the construction of DNA binding proteins.
- Bio-Spice Multi-level reasoning about Biological Systems (Arkin) a step towards virtual cells.
- A language to describe gene interaction (Brent).

More Talks and Ideas

- Language for describing gene structure and protein structure.
- Sophisticated analysis of medical literature correlated in a non-trivial manner to results of experiments .
- Language for describing protein structure and activity for function prediction.
- Vertical integration of information sources and data types for constructing on-line bio-manuals.
- Virtual cell

A pragmatic methodology:

Computationally well-formed biological questions (protein shape, multiple sequence alignment, motif detection, evolutionary trees, ...

How do algorithms scale up or perform in the presence of increasing data – benchmarks, performance analysis...

A high-risk methodology:

Not well formed problems: (virtual cell, pathways, gene function, semi-automated genome comparisons, building genetic switches,...)

How to bring different perspectives to make progress in moving towards effective algorithms – very important to make big advances.

What should DARPA do?

Computational Technique Oriented or Biological Problem Oriented?

- •Focus on few computational techniques and representations such as Probabilistic Networks, Logical Rules, Dynamical Systems, Grammatical Representations, Language Processing, Approximation Algorithms for Hard Optimization Problems
- •A cut across the most creative ideas to model and possibly control a complex biological system such as the immune system, human pathogens virtual cells, important biological pathways that cut across species, genetic switches.

Requires a cut across theory and experiments!